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Direct numerical simulation (DNS) of turbulent compressible flows is performed using
a higher-order space-time discontinuous-Galerkin finite-element method. The numerical
scheme is validated by performing DNS of the evolution of the Taylor-Green vortex and
turbulent flow in a channel. The higher-order method is shown to provide increased accu-
racy relative to low-order methods at a given number of degrees of freedom. The turbulent
flow over a periodic array of hills in a channel is simulated at Reynolds number 10,595
using an 8th-order scheme in space and a 4th-order scheme in time. These results are
validated against previous large eddy simulation (LES) results. A preliminary analysis
provides insight into how these detailed simulations can be used to improve Reynolds-
averaged Navier-Stokes (RANS) modeling.

I. Introduction

Prediction of separated flows about curved bodies remains a significant challenge in computational fluid
dynamics (CFD). These flows involve large-scale unsteady motion of the separation and reattachment points,
and are generally poorly predicted by current Reynolds averaged Navier-Stokes (RANS) models. The devel-
opment of new RANS models for these types of flows will rely on validation with respect to detailed data
obtained through direct numerical simulation (DNS) on representative test-cases, which capture the main
flow features. In this work we present DNS results for the separated flow over periodic hills using a new
unstructured higher-order scheme for compressible high-Reynolds number flows.

The flow over an array of hills in a channel has been used as a benchmark case for the study of separation.
It is modeled using a domain which is periodic in the stream-wise and span-wise directions, simplifying the
boundary conditions in a numerical simulation. Periodic hills were initially examined experimentally by
Almeida et al.1 at Reynolds numbers of up to 60,000 based on the hill height. In this work we consider
the geometry presented by Mellen et al.2 This geometry retains the complex flow features from the original
experiments of Almeida et al. in a smaller domain for the numerical simulation, and the corresponding
experimental data more closely match the periodic approximation.

The periodic hills geometry has been investigated both numerically and experimentally over a wide range
of Reynolds numbers.2–5 Fröhlich et al.3 performed highly resolved incompressible large eddy simulation
(LES) at Reynolds number, Re = 10, 595 using two different 2nd-order finite-volume discretizations with
different subgrid models. Breuer et al.5 present a comprehensive review of large eddy simulation (LES) and
DNS performed to date, comparing experimental data with numerical results using DNS up to Re = 5600
and LES up to Re = 10, 595. The current work extends these studies to DNS at Re = 10, 595.

Higher-order methods have been shown to be more efficient for simulations requiring high spatial and
temporal resolution, allowing for solutions with fewer degrees of freedom and lower computational cost than
traditional second-order CFD methods.6 As this work is focused on subsonic flows without shocks, the exact
solution is in C∞, and thus we do not expect the convergence rate of a higher-order scheme to be limited by
solution irregularity. Spectral methods were employed for the first DNS calculations in periodic domains.7

However, as DNS has been performed for increasingly more complex geometries other numerical methods
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such as finite-difference and finite-volume methods have become more common. In this work, we use a space-
time discontinuous Galerkin (DG) finite-element method, which extends to an arbitrary order of accuracy.
Finite-element methods are well suited to problems with complex geometry, where unstructured meshes may
be required. Higher-order finite-element methods are particularly attractive due to the possibility of using
local h- and p-adaptation. The use of a space-time formulation allows for adaptation in both the spatial and
temporal directions, similar to adaptive mesh refinement (AMR) methods with sub-cycling.

This paper begins with a brief description of the governing equations and our space-time discretization in
Section II. In Sections III and IV we present initial validation of our numerical scheme by performing direct
numerical simulation of the Taylor-Green vortex evolution and a fully developed turbulent channel flow. In
Section V we present results from the direct numerical simulation of the periodic hill problem. Finally, we
present a summary and discussion in Section VI.

II. Numerical Method

The compressible Navier-Stokes equations are written in conservative form as:

ρ,t + (ρui),i = 0 (1)

(ρuj),t + (ρuiuj + pδij),i = τij,i (2)

(ρE),t + (ρuiH),i = (τijvj + κTT,jδij),i (3)

where ρ is the density, uj are the components of the velocity, E is the total energy, p is the static pressure,
H = E + p

ρ is the total enthalpy, τij is the viscous stress tensor, κT is the thermal conductivity, T = p/ρR
is the temperature, and R is the gas constant. The pressure is given by:

p = (γ − 1)
(
ρE − 1

2ρvkvk
)
, (4)

where γ is the specific heat ratio. The viscous stress tensor, τij , is given by:

τij = µ (vi,j + vj,i)− λvk,kδij (5)

where µ is the viscosity, λ = 2
3µ is the bulk viscosity and δij the Kronecker delta. We rewrite (1)-(3) as a

single vector equation:

u,t + (F I
i − F V

i ),i = 0 (6)

where u = [ρ, ρuj , ρE] is the conservative state vector, while F I
i and F V

i are, respectively, the inviscid and
viscous fluxes. Applying a change of variables u = u(v), where v are the entropy variables, the Navier-Stokes
equations may be rewritten as:

A0v,t +Aiv,i − (Kijv,xj ),i = 0 (7)

with symmetric A0 = u,v, Ai = F I
i,uA0 = F I

i,v and Kij = F V
i,u,xj

A0 = F V
i,v,xj

.8 The entropy variables are:

v =

 −
s

γ−1 + γ+1
γ−1 −

ρE
p

ρuj
p

−ρp

 (8)

where s = log(p/ργ) is the entropy.
We proceed to discretize (7) as follows. The domain, Ω, is partitioned into non-overlapping hexahedral

elements, κ, while the time is partitioned into time intervals (time-slabs), In = [tn, tn+1]. Define Vh ={
w,w|κ ∈ [P(κ× I)]5

}
, the space-time finite-element space consisting of piece-wise polynomial functions in

both space and time on each element. We seek a solution v ∈ Vh which satisfies the weak form:∑
κ

{∫
I

∫
κ

−
(
w,tu + w,i(F

I
i − F V

i )
)

+

∫
I

∫
∂κ

w(F̂ I
ini − F̂ V

i ni) +

∫
κ

w(tn+1
− )u(tn+1

− )−w(tn+)u(tn−)

}
= 0 (9)

2 of 20

American Institute of Aeronautics and Astronautics Paper 2014-2784



for all w ∈ Vh. Here F̂ I
ini and F̂ V

i ni denote numerical flux functions approximating the inviscid and viscous
fluxes, respectively. In this work, the inviscid flux is computed using the method of Ismail and Roe9 , while
the viscous flux is computed using the method of Bassi and Rebay.10

The space, Vh, is spanned by the tensor product of 1D nodal Lagrange basis functions defined at the
Gauss-Legendre points. Integrals appearing in (9) are approximated with numerical quadrature using a
polynomial dealiasing rule with twice as many quadrature points as solution points in each coordinate
direction. With the choice of basis and quadrature rule, (9) gives a system of nonlinear equations which
must solved for each time-slab. In this work we use the preconditioned Jacobian-free Newton-Krylov solver
previously presented.11

III. Taylor-Green Vortex Problem

Initial validation of our numerical method was performed using DNS of the evolution of the Taylor-Green
vortex. The Taylor-Green vortex evolution is used as a model problem for turbulent flow as it involves only
periodic boundary conditions, no forcing and a simple initial condition. The flow is solved on an isotropic
domain, which spans [0, 2πL] in each coordinate direction. The initial conditions are given by:

u = V0 sin(x/L) cos(y/L) cos(z/L) (10)

v = −V0 cos(x/L) sin(y/L) cos(z/L) (11)

w = 0 (12)

p = ρ0V
2
0

[
1

γM2
0

+
1

16
(cos(2x) + cos(2y)) (cos(2z) + 2))

]
(13)

where u, v and w are the components of the velocity in the x-, y- and z-directions, p is the pressure and ρ
is the density. The Taylor-Green vortex flow is simulated using the compressible Navier-Stokes equations at
M0 = 0.1 and Re = ρ0V0L

µ = 1600. The flow is initialized to be isothermal (pρ = p0
ρ0

= RT0).

Figure 1. Iso-contours of vorticity magnitude at peak dissipation for the
Taylor-Green vortex evolution at M = 0.1, Re = 1600, computed
using 2563 degrees of freedom.

Starting from the simple initial condition, the flow becomes turbulent through repeated vortex stretching
leading to progressively smaller eddies, which are then dissipated to heat through the action of molecular
viscosity. Figure 1 shows the iso-contours of vorticity magnitude at the point of peak dissipation from a 16th-
order solution. The figure highlights the presence of small vortical structures captured by the higher-order
scheme.

For each simulation the temporal evolution of the kinetic energy

Ek =
1

Ω

∫
Ω

1
2ρv · vdΩ (14)
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is monitored. The evolution of the kinetic energy dissipation rate ε = −dEkdt was computed from the data at
the space-time quadrature points. Figure 2 shows the temporal evolution of the kinetic energy dissipation
rate computed with 256 degrees of freedom in each coordinate direction using 2nd- 4th-, 8th-, 16th-order
spatial discretizations with a 4th-order temporal discretization. The corresponding meshes have, respectively,
128, 64, 32 and 16 elements in each coordinate direction. Reference data computed from an incompressible
simulation using a spectral code on a 5123 grid12 is also presented. For the 2nd-order scheme, there remains
significant numerical dissipation at this resolution and the point of peak dissipation is poorly captured.
With increasing polynomial order, the results relative to the spectral data are significantly improved. The
dissipation rate for 4th-, 8th- and 16th-order schemes appear to fall directly upon those of the spectral data.
Zooming in at the point of peak dissipation, Figure 2(b) shows that 8th- and 16th-order schemes do better
match with the reference spectral data.

(a) Dissipation (b) Dissipation (Zoomed)

Figure 2. Taylor-Green vortex problem at M = 0.1, Re = 1600, computed
using 2563 degrees of freedom.

We present further validation of our numerical method by performing direct numerical simulation (DNS)
of the Taylor-Green vortex problem at Re = 160. At this lower Reynolds number, we are able to use
fewer degrees of freedom to resolve the flow so that we may observe the asymptotic convergence rate of our
numerical scheme. We assess the quality of our numerical solutions by computing individual terms in the
kinetic energy evolution equation. For compressible flow, the kinetic energy dissipation rate is given by the
sum of three contributions ε = ε1 + ε2 + ε3 = −dEkdt :

ε1 =
1

Ω

∫
Ω

2µsijsijdΩ (15)

ε2 =
1

Ω

∫
Ω

λuk,kuk,kdΩ (16)

ε3 = − 1

Ω

∫
Ω

puk,kdΩ (17)

where sij = 1
2 (ui,j + uj,i) is the strain-rate tensor. Since the flow is nearly incompressible, we expect the

dissipation due to the bulk viscosity (ε2) and the pressure-dilatation term (ε3) to be small. The kinetic
energy dissipation rate is then approximately equal to ε ≈ ε1. However, for the compressible simulation this
does not hold exactly. Time histories of −dEkdt , ε1, ε2 and ε3, computed using an 8th-order DG scheme in
both space and time with 128 degrees of freedom (DOF) in each coordinate direction, are presented in Figure
2. We note that ε1, ε2 and ε3 must be computed using the “lifted” gradients, accounting for the jumps in the
solution between elements, in order to be consistent with our DG discretization. Compressibility effects are
evident in oscillations of the pressure dilatation term (ε3), These oscillations are 3 orders of magnitude less
than the viscous dissipation due to strain (ε1), however they do not go away with further mesh refinement,
but correspond to the true compressible result given the isopycnic initial condition.
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Figure 3. Kinetic energy dissipation balance for the Taylor-Green vortex
problem at M = 0.1, Re = 160, computed using N = 8, and 1283

degrees of freedom.
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Figure 4 shows the evolution of −dEkdt , ε1, ε2 and ε3 computed using a the space-time DG scheme with a
4th-order temporal discretization and 2nd-order spatial discretizations using 48 and 128 degrees of freedom
(DOF) in each coordinate direction. The pressure-dilatation, ε3, has a significant bias, contributing large net
positive kinetic energy dissipation. In particular, at the lower resolution, using 48 DOFs in each direction, the
pressure-dilatation contribution to the dissipation corresponds to nearly a third of the total. With 128 DOFs
in each direction, the contribution of the pressure-dilatation term is significantly smaller, while the kinetic
energy dissipation is predominantly due to the physical dissipation, ε1. With increasing mesh refinement,
the biased pressure-dilatation term decreases toward zero as shown in Figure 5(a). Alternatively, the biased
pressure-dilatation term is reduced with increasing polynomial order as demonstrated in Figure 5(b). With
sufficient resolution, the pressure-dilatation term converges to the small (but nonzero) solution presented in
Figure 3, which exhibits a damped oscillation to zero. The biased contribution of the pressure-dilatation
term appears to be a numerical artifact of the upwind DG scheme, not present in under-resolved simulations
using higher-order central-difference schemes.13
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(b) N = 2 with 1283 DOF

Figure 4. Kinetic energy dissipation balance for the Taylor-Green vortex
problem at M = 0.1, Re = 160, computed using 2nd-order spatial
discretization.
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Figure 5. Biased pressure-dilatation term for the Taylor-Green vortex prob-
lem at M = 0.1, Re = 160, with a) mesh refinement at 2nd-order
and b) at constant DOF with increasing polynomial order.
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Our numerical scheme ensures discrete conservation of the state variables: ρ, ρui and ρE. However,
secondary conservation laws, corresponding to higher-order moments of the conservative states, such as
the kinetic energy balance, are not discretely satisfied. The balance of the kinetic energy equation is used
as a measure of the presence of numerical errors in the simulation without relying on an exact solution.
Specifically, we compute an error which is the difference between the dissipation integrated over the space-
time domain and the change in kinetic energy over the given time-interval. The error in the kinetic energy
as a function of the resolution length-scale h = 1/DOF1/3 is plotted in Figure 6(a). The 2nd-, 4th- and 8th-
order schemes show convergence of the error at slightly better than formal rate. Increasing the polynomial
order significantly reduces the error. At the lowest resolution, the 4th-order scheme has an error an order of
magnitude less than the 2nd-order scheme, while using the 8th-order scheme with the same number of degrees
of freedom gives nearly another order of magnitude reduction in error. The error versus the corresponding
CPU time given in terms of TAU benchmark work units6 in presented in Figure 6(b). The benefit of the
higher order scheme is clearly seen in this plot. The 4th order scheme on the coarsest mesh is able to attain
the same error level as the 2nd-order scheme on the finest mesh, but with a cost which is nearly two orders
of magnitude less. Extrapolating the data, the 8th-order scheme at the lowest resolution requires 4 orders
of magnitude less work than the 2nd-order scheme to reach a comparable error level.
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Figure 6. Error in kinetic energy evolution for Taylor-Green vortex problem
at M = 0.1, Re = 160.

IV. Turbulent Channel Flow

We consider the flow in a channel at Reτ = 180, where Reτ = uτδ
ν is the Reynolds number based on the

wall shear velocity, uτ =
√
τw/ρ, the channel half-width, δ, and the kinematic viscosity, ν = µ/ρ. This flow

has been previously studied using incompressible DNS by Kim et al.,14 and provides a good validation of
our numerical scheme for wall-bounded DNS. The simulations performed are nearly incompressible with a
Mach number of approximately 0.1 based on the bulk velocity and mean speed of sound. Following Kim et
al.14 the domain is of size 4πδ × 2δ × 2πδ, corresponding to stream-wise, normal, and span-wise directions,
respectively. The domain is periodic in the stream-wise and span-wise directions while adiabatic no-slip
boundary conditions are applied at the channel walls. The flow is driven by a constant body force applied
to the stream-wise momentum equation.

DNS are computed using the space-time DG scheme with a 4th-order temporal discretization and an
8th-order spatial discretization. A mesh refinement study using spatial discretizations with 96 × 64 × 80,
144 × 96 × 120, 192 × 128 × 160 and 288 × 192 × 240 degrees of freedom in the stream-wise, wall normal
and span-wise directions. On the finest mesh, this corresponds to an average spacing in the stream-wise and
span-wise directions of ∆x+ ≈ 8 and ∆z+ ≈ 5 per DOF. The degrees of freedom are clustered towards the
walls such that the first element in the wall normal direction extends to approximately y+ = 5, with average
spacing in the first element of ∆y+ ≈ 0.65. The corresponding reference spectral simulation of Kim et al.
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Figure 7. Channel flow at Reτ = 180, instantaneous stream-wise velocity.
Cross-sections of the full domain of size 4πδ×2δ×2πδ. x-, y- and z-
axes correspond to stream-wise, normal and span-wise directions
respectively.

used a mesh with 192× 128× 160 DOFs.
The flow was initialized to the laminar profile on the coarser meshes and turbulence was induced by

applying the forcing technique of Eswaran and Pope.15 The forcing is stopped after two eddy turnover
times, h/uτ after which point the turbulence is self-sustaining. The solution was transfered from the coarser
meshes and used as the initial condition on the finer meshes. Statistics were collected over 20 eddy turnover
times for all but the 288 × 192 × 240 DOF mesh, for which statistics were collected over 10 eddy turnover
times. We do not believe that the flow achieved a statistically converged state, however, these simulations
are sufficient to provide a validation test case for our numerical scheme.

Figure 7 contains cross-sections of the instantaneous stream-wise velocity on the mesh with 192×128×160
degrees of freedom. The cross-sections in the stream-wise and span-wise directions show the presence of large
eddies on the order of the channel width 2δ. The presence of streak-like structures near the walls may be seen
in the cross-section in the wall normal direction. Contours of vorticity magnitude colored by the stream-wise
velocity are shown in Figure 8. The presence of vortical structures including hairpin vortices are clearly
visible.

The mean velocity, ū, normalized by uτ , using the meshes with 64 and 192 degrees of freedom in the wall
normal direction as well as the incompressible DNS data of Kim et al.14 are plotted in Figure 9. Even at
the lower mesh resolution, the 8th-order DG results show good agreement with the reference DNS results
obtained using a spectral method. In particular, we note that the viscous sublayer and buffer layers computed
with the DG scheme match exactly with the DNS data despite this being resolved within only two elements
in the wall-normal direction on the coarsest mesh. Mismatch of the velocity profile in the core of the flow
is likely due to not having reached a statistically converged state. Figure 10 shows the corresponding r.m.s.
velocity fluctuations urms = (u′u′)1/2. The corresponding Reynolds shear stress, u′v′ is plotted in Figure
11. The data agrees well with those of Kim et al. with more resolution improving the correlation.

Again, looking at the balance of higher-order moments of the conservative state provides further validation
of our numerical scheme. The evolution equation for the Reynolds stresses for incompressible flow are given
by:

D

Dt
u

′
iu

′
j = Pij + εij + Φij +Dp

ij +Dt
ij +Dv

ij (18)

where D
Dt denote the material derivative, while the balance terms on the right-hand side of (18) are given
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Figure 8. Channel flow at Reτ = 180, instantaneous contours of vorticity
magnitude colored by stream-wise velocity.
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Figure 9. Channel flow at Reτ = 180, mean velocity profile. (Solid lines are
DG solution, symbols are solution of Kim et al.14)
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by:

Production Pij = −
(
u

′
iu

′
kūj,k + u

′
ju

′
kūi,k

)
(19)

Dissipation εij = −2νu
′
i,ku

′
j,k (20)

Pressure Strain Φij = p(u
′
i,j + u

′
j,i) (21)

Pressure Diffusion Dp
ij = −

(
pu

′
iδjk + pu

′
jδik

)
,k

(22)

Turbulent Diffusion Dt
ij = −(u

′
iu

′
ju

′
k),k (23)

Viscous Diffusion Dv
ij =

(
ν(u

′
iu

′
j),k

)
,k

(24)

We compute the incompressible Reynolds stresses and balance terms in order to compare with previous
simulations of Kim et al.14 For this low Mach number flow, the neglected compressible terms are small.
Figure 12 contains the terms in the evolution of the Reynolds shear stress u′v′ , normalized by uτ , with
increasing mesh resolution. Overall, the profiles obtained on each mesh are very similar. However, on the
coarsest mesh large oscillations appear in the pressure-strain and pressure-diffusion terms at the interface
between elements close to the wall. With increasing mesh resolution these oscillations go away and there
is excellent agreement with the reference spectral data. We postulate that the large oscillations are due to
insufficient resolution resulting in non-physical pressure-strain/pressure-diffusion as seen at low resolution in
the Taylor-Green vortex test case. When present, these numerical artifacts serve as an indication of a lack
of resolution.

The statistical distributions of the components of the velocity near the point of peak Reynolds shear stress
are presented in Figure 13. The stream-wise velocity, u, has an obviously non-Gaussian profile with skewness
of -0.74 and flatness of 3.50. The wall-normal velocity component, v, deviates somewhat from the Gaussian
distribution with skewness of 0.28 and flatness of 3.43, while the w has a nearly Gaussian distribution with
skewness of 0.006 and flatness of 3.26. In the following section we will compare these baseline distributions
with those seen in different regions of the flow about the periodic hill.

V. 2D Periodic Hill

The 2D periodic hill problem has been widely studied as a model problem for separated turbulent flow.2–5

The geometry we consider was presented by Mellen et al.2 and has been used as a test case in several studies
(c.f. Breuer et al.5 and references therein). The geometry consists of a periodic channel with a 2D hill
restriction. The size of the domain is 9h × 3.035h × 4.5h in the stream-wise, wall-normal and span-wise
directions, where h is the height of the hill. The flow is driven by a constant body force to ensure a given
mass flux.

We consider the flow at a Reynolds number Re = 10, 595, where the Reynolds number is defined using the
bulk velocity and the height of the channel above the hill. Figure 14 shows the mean velocity profile, ū, and
the r.m.s. velocity, urms = (u′u′)1/2. This flow has several complicated features which pose modeling chal-
lenges. The flow accelerates up the windward side of the hill, separates over the top and a large recirculation
region develops on the leeward side of the hill. Reattachment occurs on the flat surface between successive
hills. Figure 15 shows the instantaneous isocontour corresponding to zero stream-wise velocity colored by
entropy, which highlights the extent of the reversible flow region. Modeling challenges involve accurately
predicting the point of separation, which can have significant impact on the size of the recirculation bubble.5

Previous LES at Re = 10, 595 have shown the presence of small recirculation regions near the top of the hill
and at the base of the hill on the windward side.3 These studies have also noted large span-wise velocity
fluctuations beyond the reattachment point due to large-scale eddies convecting downstream from the shear
layer.3 This phenomenon dictates that significant resolution is needed near the shear layer.

Simulations were performed at Re = 10, 595 using our space-time DG formulation with a 4th-order
temporal discretization and an 8th-order spatial discretization. We have used a sequence of meshes using
128×64×64, 192×96×96, 256×128×128 and 384×192×192 degrees of freedom in stream-wise, wall-normal
and span-wise directions. At each mesh resolution 8th-order polynomial curvilinear meshes were generated
to match the solution order by defining the location of the Gauss-Legendre-Lobatto nodes for each element
using a pseudo-spectral rational interpolation from an underlying structured mesh. The cross-section of the
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(d) 288× 192× 240

Figure 12. Channel flow at Reτ = 180, balance terms in evolution of
Reynolds shear stress. (Solid lines are DG solution, symbols
are solution of Kim et al.14)
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Figure 13. Channel flow at Reτ = 180, distribution of velocity components.
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(a) ū (b) urms

Figure 14. Mean stream-wise velocity, ū and r.m.s. stream-wise velocity,
urms = (u′u′)1/2 for Periodic Hill at Re = 10, 595.

Figure 15. Isocontour of u = 0 colored by entropy for Periodic Hill at Re = 10, 595.
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mesh consisting of 16× 8× 8 elements, corresponding to the simulation using 128× 64× 64 DOFs, is plotted
in Figure 16.

Figure 16. Curvilinear mesh for Periodic Hill.

The simulations were run for approximately 25 flow through periods. We do not believe this is a suffi-
ciently long time to achieve a statistical convergence, however, these simulations serve as an initial validation
of our numerical scheme. As a reference, previous LES simulations of this flow by Fröhlich et al.3 and Breuer
et al.5 collected statistics over 55 and 140 flow through times, respectively.

The mean pressure and wall shear stress on the lower surface of the channel computed on the finest mesh
is presented in Figure 17. The mean shear stress profile shows the primary separation point at approximately
x = 0.20, with reattachment at x = 4.37. This matches well with the values of x = 0.19 and x = 4.69,
respectively, for the separation and reattachment points reported in LES simulations by Breuer et al5 as well
as experimental results of Rapp et al.16 showing a reattachment point at x = 4.21. Table V gives the mean
separation and reattachment points with increasing mesh resolution. The coarse simulations predict a later
separation point and earlier reattachment point, under-predicting the size of the separation bubble. With
mesh refinement the DG simulation results converge to the previously reported data. Detailed analysis of the
mean shear stress profiles reveals two additional separation points, corresponding to recirculation bubbles
at the base of the hill on the wind-ward side and at the peak of the hill. The existence of these two smaller
recirculation bubbles is consistent with previous observations by Breuer et al.5
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(a) Mean Pressure
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(b) Mean Wall Shear Stress

Figure 17. Mean pressure and wall shear stress on lower surface for the
periodic hill at Re = 10,595.

We compare our numerical simulations with experimental data of Rapp et al.16 and LES data of Fröhlich
et al.3 Figure 18 contains the mean velocity and Reynolds stress profiles computed using the finest mesh
resolution at stations with x ≈ 0.05, 2.0, 4.0, and 6.0. In the present results, we have plotted the profiles
corresponding to data along grid lines, as opposed to constant x stations, in order to simplify our post-
processing. Figure 18 shows good agreement between the present simulations, the experiments of Rapp et
al. and the LES of Fröhlich et al. Some discrepancies between the computed velocity profiles are attributable
to a mismatch in the exact location of the plotted data. The small difference in the size of the separation
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Mesh Separation Point Reattachment Point

128× 64× 64 0.28 3.94

192× 96× 96 0.22 4.13

256× 128× 128 0.21 4.22

384× 192× 192 0.20 4.37

LES (Breuer et al.5) 0.19 4.69

Experiment (Rapp et al.16) - 4.21

bubble computed in our simulation and that of Fröhlich et al.3 is evident in the velocity profiles at x ≈ 4,
where the current DNS simulations is able to better match the experimental results. The Reynolds stress
profiles obtained with the DG scheme shows good agreement with the reference experimental data and LES
data. However, numerical artifacts are apparent in the profiles, which may be due to insufficient statistical
convergence. The Reynolds stress profile at x = 0.05 shows large values of cross-stream Reynolds stress,
w′w′ . This “splatting”, corresponding to turbulent kinetic energy being transfered from stream-wise and
wall-normal fluctuations to span-wise fluctuations, was previously described by Fröhlich et al.3

The corresponding balance terms in the evolution equation for turbulent kinetic energy, k = 1
2u

′
iu

′
i, are

plotted in Figure 19. As with the Reynolds stresses, the computed statistics show good agreement with those
of Fröhlich et al.3 However, numerical artifacts are apparent in the profiles at the boundary of elements.
Given similar behavior in under-resolved turbulent channel flow simulations, this suggests that even the
finest mesh simulation is somewhat under-resolved.

We compute the probability distribution function of the velocity at five selected points in the domain. The
location of the selected points are plotted in Figure 20, while corresponding distribution of the components
of the velocity at each point are presented in Figure 21. Point 1 is selected near the upper surface of the
channel, away from the hill and is intended as a baseline profile which is similar to the result presented for the
channel flow. Point 2 is selected over the top of the hill. The presence of “splatting” is observed in the long
tails of the span-wise velocity distribution relative to the stream-wise and wall-normal velocity distributions.
At point 3 in the recirculation region, we see mean large negative u and positive v with distributions which
have tails not significantly longer than the baseline. Points 4 and 5 are in the most energetic part of the
domain, straddling the mean separation line. At these two points, we see very long tails in the u- and
v-profiles, corresponding to the large-scale unsteadiness as a result of the separated flow. The skewness of
both u and v switch sign, showing that they are straddling the shear layer.

We examine the correlation between the mean strain and Reynolds stresses in order to evaluate the
validity of the Boussinesq hypothesis:

−u′
iu

′
j ≈ 2νtsij −

1

3
u

′
ku

′
kδij (25)

The contours of the mean strain and the deviatoric part of the Reynolds stresses are given in Figure 22. In
general, regions of large strain are correlated with regions of large Reynolds stress, however the sign of the
constant of proportionality in the shear layer changes between the normal and shear stresses. Additionally,
in the shear layer, the magnitude of the normal strains are similar to the shear strain, unlike an attached
boundary layer where the magnitude of the normal strains typically is much smaller. Coming over the top of
the hill, the mean normal strain changes sign while this is not seen in the normal Reynolds stresses. Further,
at the rise to the hill, a large normal stress is present in a region with no corresponding strain. Hence, a linear
eddy viscosity model will over-predict strongly the turbulent diffusion in this region. These observations are
indicative of the insight that can be gained from these simulations to improve RANS modeling.

VI. Summary and Conclusions

In this paper we have performed direct numerical simulations of turbulent compressible flows at low mach
number using a higher-order space-time discontinuous-Galerkin method. We validated our numerical scheme
for turbulent flow by studying the Taylor-Green vortex problem. We demonstrated that the upwind DG
scheme gives a net positive bias in the pressure-strain contribution to the kinetic energy dissipation for under-
resolved simulations. This biased contribution disappears with increased resolution and we demonstrated
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(b) Reynolds Stress, x = 0.05
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(c) Velocity Profile, x = 2.0
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(d) Reynolds Stress, x = 2.0
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(e) Velocity Profile, x = 4.0
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(f) Reynolds Stress, x = 4.0
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(g) Velocity Profile, x = 6.0
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(h) Reynolds Stress, x = 6.0

Figure 18. Velocity and Reynolds stress profiles at various stations in the
domain for the periodic hill at Re = 10, 595. (Solid lines are
DG solution, dashed lines are LES solution of Fröhlich et al.,3

symbols are experimental results of Rapp et al.16)
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(b) x = 2.0
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(c) x = 4.0
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(d) x = 6.0

Figure 19. Balance terms in evolution equation for turbulent kinetic en-
ergy at various stations in the domain for the periodic hill at
Re = 10, 595. (Solid lines are DG solution, dashed lines are LES
solution of Fröhlich et al.3)

Figure 20. Location of points for computing velocity distributions on the
periodic hill at Re = 10, 595
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Figure 21. Velocity distributions at selected points for the periodic hill at
Re = 10, 595. (Values in parenthesis correspond to skewness and
flatness).
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Figure 22. Reynolds stress and mean strain contours for the periodic hill
at Re = 10, 595. (Contour lines correspond 30 uniform intervals
between [-2,2] for strain and [-0.04,0.04] for Reynolds stresses.)
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formal error convergence rates up to 8th-order.
Next, we validated our numerical scheme for wall-bounded turbulent flows by performing DNS of turbu-

lent channel flow at Reτ = 180. We presented results for mean flow and higher moment quantities which
were consistent with results previously presented in the literature.

Finally, we performed direct numerical simulation of turbulent flow in a channel with periodic hill con-
strictions. We validated our results by comparing with previously computed LES simulations. We have
presented detailed statistics showing velocity distributions at various regions of the flow. Analysis of the
resulting flow fields could provide insights that would facilitate improvements to RANS models. Future work
will involve performing higher-fidelity simulations over larger times to provide statistically converged data.
data.
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